Analytical investigation of heat transfer and classical entropy generation in microreactors – The influences of exothermicity and asymmetry
نویسندگان
چکیده
Heat transfer and entropy generation are analysed theoretically in a thermal model of microreactors accommodating processes with large heat of reaction. This includes an asymmetric, thick wall, partially-filled porous microchannel under local thermal non-equilibrium. The system features exothermicity/endothermicity within the solid and fluid phases to represent heat of chemical reactions and absorption of microwaves by the microstructure. For constant but uneven temperature boundary condition, analytical solutions are developed for the temperature profiles, Nusselt number (Nu) and local and total entropy generation. The influences of the system configuration and thermal specifications upon the heat transfer and irreversibilities are, subsequently, examined. This reveals the strong effects of the wall thicknesses and thermal asymmetry on the heat transfer and entropy generation of the microreactor. Most importantly, it is shown that for given exothermicities in the system there exist optimal wall and porous insert thicknesses that result in the maximum Nu and minimum total entropy generation. The presented analyses are therefore of practical significance and demonstrate the possibility of developing thermal and entropic optimal designs of the microstructure of microreactors. 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http:// creativecommons.org/licenses/by/4.0/).
منابع مشابه
Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system
Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...
متن کاملA numerical investigation of heat transfer and pressure drop in a novel cylindrical heat sink with helical minichannels
This study numerically investigated heat transfer and fluid flow characteristics in a novel cylindrical heat sink with helical minichannels for the laminar flow of fluid with temperature-dependent properties. A finite volume method was employed to obtain the solution of governing equations. The effects of helical angle, channel aspect ratio, and Reynolds number, which were regarded as main para...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملHeat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features
This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal nonequilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate ...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کامل